Multi-directional geodesic neural networks via equivariant convolution
نویسندگان
چکیده
منابع مشابه
Metaheuristic Algorithms for Convolution Neural Networks
A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning ...
متن کاملOptimally Rotation-Equivariant Directional Derivative Kernels
We describe a framework for the design of directional derivative kernels for two-dimensional discrete signals in which we optimize a measure of rotation-equivariance in the Fourier domain. The formulation is applicable to rst-order and higher-order derivatives. We design a set of compact, separable, linear-phase derivative kernels of di erent orders and demonstrate their accuracy.
متن کاملDirectional geodesic active contour for image segmentation
By incorporating the image gradient directional information into the geodesic active contour model, we propose a novel active contour model called directional geodesic active contour, which has the advantage of selectively detecting the image edges with different gradient directions. The experiment results show the high performance of the proposed active contour in image segmentation, especiall...
متن کاملSingle Image Dehazing via Multi-scale Convolutional Neural Networks
The performance of existing image dehazing methods is limited by hand-designed features, such as the dark channel, color disparity and maximum contrast, with complex fusion schemes. In this paper, we propose a multi-scale deep neural network for single-image dehazing by learning the mapping between hazy images and their corresponding transmission maps. The proposed algorithm consists of a coars...
متن کاملEvent Extraction via Dynamic Multi-Pooling Convolutional Neural Networks
Traditional approaches to the task of ACE event extraction primarily rely on elaborately designed features and complicated natural language processing (NLP) tools. These traditional approaches lack generalization, take a large amount of human effort and are prone to error propagation and data sparsity problems. This paper proposes a novel event-extraction method, which aims to automatically ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Graphics
سال: 2019
ISSN: 0730-0301,1557-7368
DOI: 10.1145/3272127.3275102